TopicExplorer: Exploring Document Collections with Topic Models

نویسندگان

  • Alexander Hinneburg
  • Rico Preiss
  • René Schröder
چکیده

The demo presents a prototype – called TopicExplorer– that combines topic modeling, key word search and visualization techniques to explore a large collection of Wikipedia documents. Topics derived by Latent Dirichlet Allocation are presented by top words. In addition, topics are accompanied by image thumbnails extracted from related Wikipedia documents to aid sense making of derived topics during browsing. Topics are shown in a linear order such that similar topics are close. Topics are mapped to color using that order. The auto-completion of search terms suggests words together with their color coded topics, which allows to explore the relation between search terms and topics. Retrieved documents are shown with color coded topics as well. Relevant documents and topics found during browsing can be put onto a shortlist. The tool can recommend further documents with respect to the average topic mixture of the shortlist.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic keyword extraction using Latent Dirichlet Allocation topic modeling: Similarity with golden standard and users' evaluation

Purpose: This study investigates the automatic keyword extraction from the table of contents of Persian e-books in the field of science using LDA topic modeling, evaluating their similarity with golden standard, and users' viewpoints of the model keywords. Methodology: This is a mixed text-mining research in which LDA topic modeling is used to extract keywords from the table of contents of sci...

متن کامل

Visual Analytics for Large Document Sets

We examine what we refer to as topic similarity networks: graphs in which nodes represent latent topics in text collections and links represent similarity among topics. Efficient and effective approaches to both building and labeling such networks are described. Visualizations of topic models based on these networks are shown to be a powerful means of exploring, characterizing, and summarizing ...

متن کامل

Aletras, Nikolaos, Timothy Baldwin, Jey Han Lau and Mark Stevenson (to appear) Representing Topics Labels for Exploring Digital Libraries, In Proceedings of Digital Libraries 2014, London, UK

Topic models have been shown to be a useful way of representing the content of large document collections, for example via visualisation interfaces (topic browsers). These systems enable users to explore collections by way of latent topics. A standard way to represent a topic is using a set of keywords, i.e. the top-n words with highest marginal probability within the topic. However, alternativ...

متن کامل

یک مدل موضوعی احتمالاتی مبتنی بر روابط محلّی واژگان در پنجره‌های هم‌پوشان

A probabilistic topic model assumes that documents are generated through a process involving topics and then tries to reverse this process, given the documents and extract topics. A topic is usually assumed to be a distribution over words. LDA is one of the first and most popular topic models introduced so far. In the document generation process assumed by LDA, each document is a distribution o...

متن کامل

Refinery: An Open Source Topic Modeling Web Platform

We introduce Refinery, an open source platform for exploring large text document collections with topic models. Refinery is a standalone web application driven by a graphical interface, so it is usable by those without machine learning or programming expertise. Users can interactively organize articles by topic and also refine this organization with phrase-level analysis. Under the hood, we tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012